

Air void distribution in concrete studied using X-ray/neutron tomographic imaging and optical reflection imaging

Aneta Antolik, Mariusz Dąbrowski, Michał A. Glinicki

Purpose of research

Quantitative description of air void distribution in air-entrained concrete to validate the standard approach to freeze-thaw durability (case study).

Range of investigation

Three measuring techniques:

- neutron imaging \rightarrow Budapest Neutron Centre, Hungary
- X-ray microtomography \rightarrow Yonsei University, Korea
- optical microscopy \rightarrow IPPT PAN, Poland

Air-void system parameters significant for freeze-thaw durability:

- (A) Powers spacing factor = model description the void-to-void proximity (the distance distribution between air voids)
- (B) the air-void size distribution (small voids more important)
- (C) the total content of voids (not too much to reduce the strength)

Concrete composition

Volumetric content based on mix design data

	Relative volume content				
Concrete component	S61	WP	GWB19		
Hardened cement paste	0.300	0.260	0.303		
Air voids (entrained and entrapped)	0.066	0.016	0.042		
Fine aggregate (quartz sand)	0.218	0.208	0.198		
Coarse aggregate	0.415	0.516	0.457		

Nearest-Neighbour Spacing Distribution

T.Murotani, S.Igarashi, H.Koto, Distribution analysis and modeling of air voids in concrete as spatial point processes, Cement and Concrete Research 115, 124-132, 2019

PAN

V4-Korea RADCON Workshop, 2-3 September, 2021

2.5

2D vs 3D

	S61			WP			GWB19		
	standard	2D	СТ	standard	2D	СТ	standard	2D	СТ
A [%]	6.10	7.494	6.227	1.33	1.614	2.144	3.82	6.583	5.125
L _{av} [mm]	0.23	0.295	-	0.29	0.418	-	0.21	0.276	-
L _{Cav} [mm]	-	0.349	0.597	-	0.457	0.4396	-	0.341	0.332
A ₃₀₀ [%]	1.42	2.189	0.828	0.53	0.952	0.834	1.94	2.270	1.583

standard – traverse line optical analysis on polished sections (min. 50 μ m) 2D – plane optical analysis on polished sections (min. 50 μ m) CT – microtomography analysis (min. 20 μ m; *to be repeated for min.50 \mum*)

Comparison: 2D&CT vs. standard

V4-Korea RADCON Workshop, 2-3 September, 2021

IPPT PAN

Comparison: 2D&NT vs. standard

Chord length distribution in GWB19 concrete (2D - calculations for diameter above 6 μ m, CT above 20 μ m, NT above 50 μ m)

Chord length [um]

Final remarks

- Void-to-void proximity in concrete determined on using optical plane analysis is confirmed by spatial analysis using μCT, provided that the differences in pixel size are considered
- Characterization of void-to-void proximity by Powers spacing factor is confirmed in industrially produced air entrained concrete
- The distribution of air void chords/diameters is heavily dependent of the pixel resolution
- Supplementary calculations needed, based on X-ray microtomography (treshold value, resolution limit)

ACKNOWLEDGEMENT

The investigation was financially supported by the project funded by the Polish National Centre for Research and Development (Project V4-Korea/2/2018)

Thank you for your attention!

