

Napromienianie próbek zaprawy na stanowisku sterylizacyjnym w basenie przechowawczym reaktora MARIA

długotrwałe oddziaływanie radiacyjne

Daria Jóźwiak-Niedźwiedzka, Mariusz Dąbrowski, Kinga Dziedzic, Justyna Kuziak

Seminarium Pracowni Pól Odkształceń

RADCON, 30.07.2021r.

Plan prezentacji

- 1. Koncepcja badań
- 2. Materiały i próbki
- 3. Warunki badania
- 4. Napromienianie próbek w basenie Świerk
- 5. Wyniki badań
 - a. Właściwości mechaniczne
 - b. Pasywacja stali
 - c. Karbonatyzacja
 - d. Mikrostruktura
- 6. Wnioski

1. Koncepcja badań

Założeniem badawczym był zróżnicowany stopień degradacji zapraw cementowych po ekspozycji w promieniowaniu gamma objawiający się:

- różnym postępem karbonatyzacji. Efekt zwiększonej aktywności H₂O₂ w stosunku do Ca(OH)₂.
- korozją zbrojenia. Przyspieszone utlenianie żelaza w wyniku zmniejszenia zawartości tlenu i zwiększenia dostępności wodoru z radiolizy wody.

Celem przeprowadzonych badań było określenie wpływu promieniowania gamma na zjawiska zachodzące w kompozytach o matrycy cementowej poprzez zróżnicowanie ich składu.

Próbki były wykonane przy wysokim współczynniku wodno-cementowym w celu odróżnienia wpływu promieniowania od dojrzewania zapraw.

2. Materiały i próbki

- Cement portlandzki CEM I 52,5R cementownia Ożarów
- Popiół lotny krzemionkowy Elektrownia Kozienice (20% i 40%)
- kamień wapienny mielony 8000 cm²/g wg Blaine'a (20% i 40%)
- Piasek normowy kwarcmix
- w/c = 0,6
- Beleczki 40x40x160 mm: właściwości mechaniczne, karbonatyzacja
- Walce o średnicy 58 mm i wys. 100 mm, pręt zbrojeniowy ø 6 mm: pasywacja stali, SEM
- Walce o średnicy 85 mm i wys. 80 mm, pręt zbrojeniowy ø 19 mm: SEM, XRD
- Walce o średnicy 100 mm i wys. 150 mm: karbonatyzacja

Dojrzewanie: 28 dni w wodzie, T=20±2°C

3. Warunki badania

- Komora klimatyczna z CO₂ (21±2°C, RH= 60%±10%, CO₂=1%) walce =100mm, h=200 mm
- Warunki laboratoryjne (20±2°C i RH=50%±10%) walce z prętami, beleczki
- Zamknięte w puszce i umieszczone w cieplarce w 40 °C walce z prętami, beleczki
- Zamknięte w puszce i umieszczone w basenie Reaktora Maria (średnia T=38°C) – promieniowanie γ (walce z prętami, beleczki)

Projektowane warunki w puszkach:

- Wariant 1: RH=50%±10%, CO₂=1%,
- Wariant 2: RH=100%, CO₂=1%.

3. Zamykanie próbek w puszkach

Napromienianie próbek zaprawy na stanowisku sterylizacyjnym w basenie przechowawczym reaktora MARIA

Okres przechowywania próbek w basenie reaktora Maria: 29.05.2020 – 25.01.2021

```
07.03.2020 – formowanie próbek
08.04.2020 – umieszczenie próbek w puszkach
...
29.05.2020 – umieszczenie próbek w basenie
```

Wielkość dawki pochłoniętej w MGy zarejestrowanej w zasobnikach z betonem

Oznaczenie	wilgotn	ość 50%	wilgotność 100%		
	średnia	odchylenie	średnia	odchylenie	
RO	0.8	0.3	1.0	0.4	
R20V	0.7	0.3	0.8	0.3	
R40V	0.7	0.3	0.9	0.4	
R20LL	0.5	0.2	0.8	0.3	
R40LL	0.8	0.3	1.0	0.4	

3. Weryfikacja warunków w puszce - 11 dni

Zmiana RH (iButtons) w puszce z dwoma beleczkami 160x40x40mm po włożeniu do komory o temperaturze 40 °C + pomiar CO_2 (czujnik komory CO_2)

3. Weryfikacja warunków w puszkach od 8.04.2020 do 26.09.2021 roku

Zmiana RH (iButtons) w puszce z dwoma beleczkami 160x40x40mm po włożeniu do komory o temperaturze 40 °C + pomiar CO_2 przed wyjęciem (czujnik komory CO_2)

3. Weryfikacja warunków w puszkach od 8.04.2020 do 26.09.2021 roku

		Czujnik zewnętrzny		iBatons	
Wypełnienie puszki	Projektowane RH	T [°C]	RH [%]	T [°C]	RH [%]
1 beleczka	50	39.3	53.0	40.1	58.9
2 beleczki	50	39.6	63.5	40.6	61.1
walec 🔊 6 mm	50	39.7	60.9	40.5	56.6
walec <mark>©</mark> 20 mm	100	39.1	98.7	38.6	100

Średnia wilgotność w puszkach (czujnik zewnętrzny):

- gdy projektowane 50%, to RH=56±7%
- gdy projektowane 100%, to RH=93±6%

Wytrzymałość na zginanie

■ R-O ■ R-20LL ■ R-40LL ■ R-20V ■ R-40V

Warunki środowiskowe

Średnia z 3-4 próbek 160x40x40 mm

Wytrzymałość na ściskanie

■ R-O ■ R-20LL ■ R-40LL ■ R-20V ■ R-40V

Warunki środowiskowe

Średnia z 5-7 próbek 40x40x40 mm

Dynamiczny moduł sprężystości

■ R-O ■ R-20LL ■ R-40LL ■ R-20V ■ R-40V

Warunki środowiskowe

Średnia z 3-4 próbek 160x40x40 mm

Skład fazowy - XRD

Q-kwarc, P – portlandyt, E-ettringit, K-kalcyt, V-vateryt, A-Aragonit

```
Skład fazowy - XRD
```


Zaprawa referencyjna

Skład fazowy - XRD

Zaprawa referencyjna

Skład fazowy - XRD

Zaprawa z 40% dodatkiem kamienia wapiennego

Ochrona zbrojenia – EIS (elektrochemiczna spektroskopia impedancyjna)

Analiza sinusoidalnego napięcia pobudzającego i sinusoidalnej odpowiedzi prądowej układu pozwala wyznaczyć jego impedancję przy potencjale E.

R_r – rezystor odpowiadający rezystancji roztworu,

Cwp – kondensator odpowiadający pojemności warstwy podwójnej,

*R*_p - odpowiadający **rezystancji przeniesienia ładunku**

Ochrona zbrojenia – widma impedancyjne

MARIA

LAB

Wyższa impedancja i większe kąty przesunięcia fazowego przy niższych częstotliwościach świadczą o mniejszej szybkości korozji i trwalszej warstwie pasywnej

Ochrona zbrojenia – metoda potencjodynamiczna (PN-86-B-01810)

- 1 elektroda badana,
- 2 elektroda pomocnicza,
- 3 elektroda odniesienia (NEK),
- 4 klucz elektrolityczny,
- 5 naczynie przejściowe wypełnione KCl,
- 6 wyciąg wodny z betonu lub woda destylowana,
- 7 potencjostat,
- 8 rejestrator

Ochrona zbrojenia – krzywa polaryzacji

ROH 50 puszka LAB

Ochrona zbrojenia – gęstość prądu korozyjnego

Im większa wartość gęstości prądu korozyjnego tym szybciej postępuje korozja

5. Karbonatyzacja – próbki porównawcze

60 Temp. 21±2°C głębokość karbonatyzacji, mm 50 RH 60%±10% 40 CO₂=1% 30 20 ----R0 10 0 0 100 150 200 250 300 50 350 liczba dni w 1% CO2 Po 28 dniach od Umieszczenie próbek w basenie, 54 dni od początku badania zaformowania

PN-EN 13295

Głębokość karbonatyzacji, mm

Oznaczenie	Lab.	Puszka lab.		Puszka basen	
	50% RH	50% RH	100% RH	50% RH	100% RH
	20C	40C	40C	38C	38C
RO	2.5	0.7	0.0	1.1	0.0
R20V	3.7	1.2	0.0	1.5	0.0
R40V	5.3	1.3	0.2	1.8	1.2
R20LL	3.7	0.5	0.0	1.3	0.2
R40LL	5.8	1.3	0.2	1.9	0.8

1.1 mm

0.8 mm

1.9 mm

content of fly ash, %

content of limestone, %

5. Karbonatyzacja vs dawka pochłonięta

Dodatki mineralne

5. Mikrostruktura SEM - przełom

Próbki przechowywane w basenie:

• Mniej kryształów monosiarczanu.

Monosiarczan występuje w postaci heksagonalnych tabliczek

• Większe tabliczki portlandytu, lepiej wykształcone.

R40LL, 50% Lab KRAWĘDŹ

R40LL, 50% Basen KRAWĘDŹ

5. Mikrostruktura SEM - zgłady

Próbki przechowywane w basenie. Im głębiej tym:

- Więcej monosiarczanu
- Mniej "pustek powietrznych"
- Więcej nieprzereagowanych ziarn cementu
- Więcej portlandytu przy kruszywie (ITZ)
- Mniej rys w matrycy

R0, 50%, lab, krawędź

R0, 50%, basen, krawędź

5. Mikrostruktura SEM - zgłady

R0, 50% Lab KRAWĘDŹ

R0, 50% Basen KRAWĘDŹ

R40V, 50% Basen KRAWĘDŹ

R40V, 50% Basen ŚRODEK

Zwarta warstwa kalcytu Znikome ilości monosiarczanu "Porowata" matryca Nieprzereagowane ziarna cementu Więcej monosiarczanu Jednolita matryca cementowa (zwarta)

R40V, 50% Basen KRAWĘDŹ

Zwarta warstwa kalcytu

R40V, 50% Lab KRAWĘDŹ

Niejednorodna warstwa kalcytu

R40LL, 50% Basen KRAWĘDŹ

R40LL, 50% Lab KRAWĘDŹ

Wstępne podsumowanie

- Warunki wilgotnościowe w puszkach zaprojektowano prawidłowo – potwierdzają to pomiary wilgotności czujnikiem zewnętrznym i czujnikami iButtons
- Zróżnicowanie materiałowe zaprojektowano prawidłowo potwierdzają wyniki karbonatyzacji próbek walcowych przechowywanych w komorze klimatycznej w atmosferze 1% CO₂ i RH=60%.

Wstępne podsumowanie

- Badania pasywacji stali zbrojeniowej (EIS, Krzywa polaryzacji) wykazują mniejszą trwałość warstwy pasywnej próbek napromienianych.
- Warunki w puszkach i ograniczona objętość CO₂ spowodowały występowanie karbonatyzacji do głębokości próbki wynoszącej do 3 mm.
- Analiza składu fazowego potwierdza powstawanie większej ilości kalcytu w próbkach napromienianych oraz w przypadku zaprawy referencyjnej bez dodatków pojawiają się niewielkie piki pochodzące od vaterytu.

Wstępne podsumowanie

- Potwierdzono zależność głębokości karbonatyzacji od rodzaju oraz ilości dodatku mineralnego oraz wilgotności
- Uzyskano większą wartość głębokości karbonatyzacji w próbkach poddanych odziaływaniu promieniowania w porównaniu do próbek przechowywanych w war. lab.
- Określono zmiany w mikrostrukturze próbek wynikające z oddziaływania promieniowania
- Uzyskano zależność głębokości karbonatyzacji od dawki pochłoniętej w próbkach zawierających dodatki mineralne
- Wzajemne zależności parametrów wyznaczonych w badaniach będą przedmiotem dalszej analizy.

Dziękujemy za uwagę

Praca została przygotowana jako rezultat badań finansowanych przez Narodowe Centrum Badań i Rozwoju w ramach Projektu Nr V4-Korea/2/2018