

LOW - ACTIVATION CONCRETE preliminary results

Daria Jóźwiak-Niedźwiedzka


Outline

- Goal of the research
- Literature review
- Research plan: materials
- Preliminary results
- Expected results

Goal of the research

Estimation of the activation of concrete constituents: cement and aggregate

Reduction of the potential activity of shielding concrete due to the permissible level at the liquidation of Nuclear Power Plant (NPP)

About 300 samples of concrete materials in Japan were collected.

136 aggregates, 97 fine aggregates, 66 cements, and 7 concrete pieces were collected.

Aggregates	granite 6, gneiss 2, crystalline schist 5, sandstone 23, hard sandstone 5, sand 27,
	shale 6, breccia 1, quartzite 2, slate 3, quartz porphyry 3, porphylite 2, andesite
	20, porphyry 1, trachyte 1, diabase 2, basalt 7, amphiborite 4, gabbro 4,
	peridotite 4, serpentnite 1, limestone 7
Cement	normal portland 32, moderate heat 10, fly ash 13, aluminous 1, desulfurization
	from exhaust gas 2, Portland blast-furnace slag 8

Suzuki, A., Iida, T., Moriizumi, J., Kameyama, T., Sakuma, Y., Takada, J., Yamasaki, K., & Yoshimoto, T. (2000). Quantitative measurements of trace elements with large activation cross section for concrete materials in Japan. IRPA-10 Proceedings of the 10th international congress of the International Radiation Protection Association on harmonization of radiation, human life and the ecosystem, (p. 1v). Japan: Japan Health Physics Society.

	nuclide	Half life (y)
	Na-24	0.002
Nineteen nuclides were detected with	Ca-47	0.012
	Sc-46	0.229
activation analysis of the samples.	Cr-51	0.076
	Mn-54	0.856
	Fe-59	0.122
Cobalt-60, Europe-152 and Cesium-134 were	Co-60	5.270
investigated.	Se-75	0.328
	Rb-86	0.051
	Sb-122	0.007
	Cs-134	2.062
	Ba-131	0.036
	La-140	0.005
	Sm-153	0.005
	Eu-152	13.300
	Tb-160	0.197
	Yb-175	0.066
	Lu-177	0.018
	Hf-181	0.116

		auon or co,	Lat			endes	in each			
Material	No.of Samples	[ppm] (range)	S.D.	R	Eu-152 [ppm] (range)	S.D.	R	Cs-134 [ppm] (range)	S.D.	R
Granite	6	7.6 (4.2-11.7)	3.1	0.96	0.91 (0.43-1.27)	0.30	0.98	3.9 (2.1-6.9)	1.9	0.94
Gneiss	2	9.7 (9.6-9.8)	0.1	1.0	0.86 (0.74-0.97)	0.17	1.0	5.3 (4.5-6.1)	1.2	1.0
Crystalline schist	5	12.4 (7.1-19.4)	4.9	0.98	1.2 (0.68-1.8)	0.51	0.93	3.3 (1.9-5.0)	1.8	0.93
Hard sandstone	5	14.2 (6.9-9.4)	10.2	0.84	0.75 (0-1.1)	0.46	0.87	4.4 (0-7.5)	3.3	0.97
Sandstone	23	10.2 (2.5-47.7)	7.1	0.79	0.90 (0-2.3)	0.39	0.92	3.9 (0-11.6)	2.2	0.93
Sand	27	6.7 (0.72-19.3)	4.6	0.95	0.73 (0-1.9)	0.49	0.97	2.5 (0-8.7)	1.5	0.90
Shale	6	9.7 (5.2-12.6)	2.8	0.95	1.1 (0.9-1.6)	0.43	0.99	6.7 (2.8-13.5)	4.5	0.92
Breccia	1	19.4			1.2			1.7		
Doromite	1	0.45			0.13			0		
Quartzite	1	4.2			0			0.90		
Slate	3	11.1 (10.5-11.6)	0.8	1.0	1.5 (1.1-1.7)	0.30	0.94	6.5 (6.2-7.5)	0.88	0.96
Quartz porphyry	2	6.5 (6.3-6.7)	0.27	1.0	1.0 (0.9-1.2)	0.16	1.0	7.9 (7.5-8.3)	0.60	1.0
Porphyrite	1	31.5			3.1			0		
Andesite	20	15.4 (0.45-43.2)	11.7	0.92	1.2 (0.13-3.2)	0.52	0.88	4.5 (0-18.3)	4.0	0.90
Porphyry	1	2.5			0.58			1.9		
Trachyte	1(2)	0.66			0			1.6		
Diabase	1	44.6			1.6			0		
Basalt	7	26.6 (0-67.3)	23.1	0.96	1.8 (0.77-3.1)	0.75	0.99	1.6 (0-6.9)	2.2	0.84
Amphibolite	4	15.4 (0-43.1)	15.9	0.93	0.97 (0-1.92)	0.57	0.93	2.0 (0-8.7)	1.2	0.96
Gabbro	4	88.1 (42.8-127)	39.8	0.93	0.28 (0-0.41)	0.13	0.91	0.53 (0-2.1)	0.85	0.79
Peridotite	4	107 (106-113)	4.3	0.04	0.11 (0-0.43)	0.17	0.70	<u>)</u>	0	0
Serpentnite	1	41.7			1.4			2.7		
Limestone	7	1.8 (0-7.2)	2.5	0.81	0.17 (0-0.75)	0.27	0.85	1.4 (0-6.7)	2.3	0.74
Average in		17.3	19.1	0.78	0.93	0.61	0.86	3.2	2.7	0.93
aggregate										
Portland cement	32	9.4 (5.4-14.2)	3.0	0.92	0.68 (0.39-0.94)	0.21	0.89	5.9 (1.6-15.1)	2.9	0.95
Moderate heat	10	23.9 (6.1-51.5)	16.3	0.95	1.17 (0.49-6.4)	1.2	0.63	9.8 (2.9-13.8)	8.7	0.82
Fly ash	13	16.5 (6.6-31.6)	7.2	0.95	2.4 (0.94-4.6)	0.83	0.94	7.4 (4.1-15.7)	3.6	0.90
Aluminous	1	3.4			1.2			1.4		
Portland blast-	8	5.3 (2.7-9.0)	1.9	0.97	1.6 (1.3-2.3)	0.30	0.89	3.9 (1.6-10.8)	2.8	0.87
furnace slag	0	5.5 (2.7-9.0)	1.9	0.97	1.0 (1.3-2.3)	0.50	0.09	5.9 (1.0-10.8)	2.0	0.07
Desulfurrization	2	0.4 (0.15-0.60)	0.33	1.0	0.06 (0.05-0.07)	0.01	1.0	0.05 (0-1.0)	0.08	1.0
from exhaust gas	4	0.10-0.00)	0.55	1.0	0.00 (0.05-0.07)	0.01	1.0	0.05 (0-1.0)	0.00	1.0
Average in		12.1	8.6	0.89	1.2	0.92	0.85	6.3	4.39	0.87
cement		12.1	0.0	0.09	1.2	0.94	0.05	0.5	4.59	0.07

Table 4 The concentration of ⁶⁰Co, ¹⁵²Eu and ¹³⁴Cs forming nuclides in each concrete materials.

- The concentration of Co-60 formed in basic rock (gabbro, basalt) was the highest.
- The concentration of Co-60 formed in carbonate rock was the lowest.
- <u>Weathered aggregates</u> had lower concentration of 60-Co, because cobalt is easy to dissolve in water.
- The concentration of Eu-152 formed in intermediate rock (diorite, andesite) was the highest.
- The concentration of **Eu-152 formed in carbonate rock was the lowest**.
- Europium in the aggregate was a little decreased by weathering.
- The combination of the lowest Co-60, Eu-152 and Cs-134 concentrations in the concrete was achieved with limestone as aggregate and white Portland cement produced in particular places.

These concentrations were about 1/25-1/100 of the mean value in ordinary concrete or less.

A.Suzuki, T.Iida, J.Moriizumi, T.Kameyama, Y.Sakuma, J.Takada, K.Yamasaki and T.Yoshimoto, Trace Elements with Large Activation Cross Section in Concrete Materials in Japan, Journal of Nuclear Science and Technology, 2001, 38:7, 542-550

• Though the serpentinite concrete was the most excellent with respect to neutron shielding effect, it had very high concentrations of Co-60.

Therefore, in the viewpoint of reducing the radioactive waste, serpentinite concrete was <u>not suitable</u> for biological shield.

- Co-60, Eu-152 and Cs-134 formed in aggregates were decreased by weathering, however, these aggregates were not suitable for concrete because of their lower strength.
- The <u>fly ash cement was not suitable</u> for the biological shielding concrete, because fly ash is easy to activate, and the natural radionuclides concentration in fly ash are also very high.

A.Suzuki, T.Iida, J.Moriizumi, T.Kameyama, Y.Sakuma, J.Takada, K.Yamasaki and T.Yoshimoto, Trace Elements with Large Activation Cross Section in Concrete Materials in Japan, Journal of Nuclear Science and Technology, 2001, 38:7, 542-550

 According to the recommendations of the International Atomic Energy Agency, the material is classified as radioactive waste due to its clearance level (CL) of each radioactive nuclide (C_i [Bq/g]).

CL Co-60 = 0.4 Bq/g

CL Eu - 152 = 0.4 Bq/g

CL Cs-134 = 0.5 Bq/g

IPPT PAN

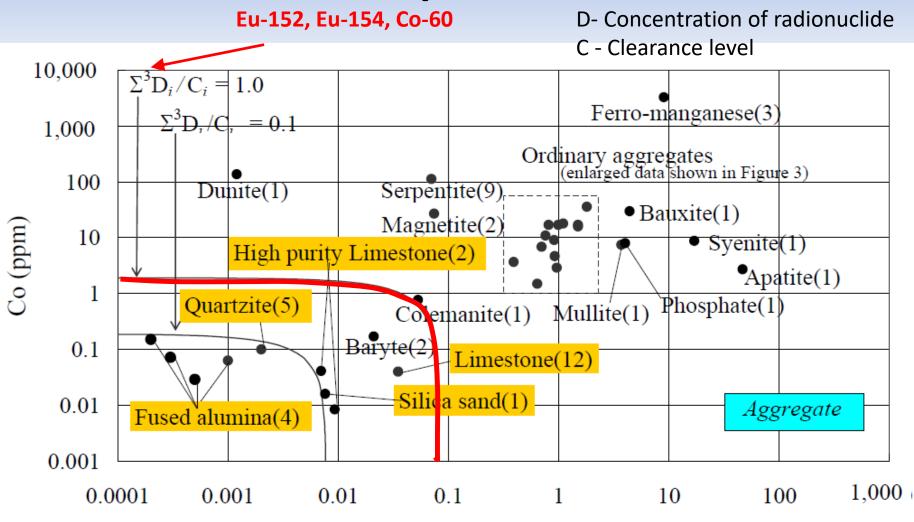
- To classify radioactive/non-radioactive materials, Σ(D_i/C_i) is calculated, where "Di" indicates concentration of each residual radioisotope and (_i) indicates each radioisotope.
- When the $\Sigma(D_i/C_i)$ of waste is less than 1, the waste can be treated as non-radioactive waste.

[•] Kimura, K., Hasegawa, A., Hayashi, K., Uematsu, M., Ogata, T., Tanosaki, T., Yoshino, R., Sato, M., Saito, M., Kinno, M. "Development of Low-Activation Design Method for Reduction of Radioactive Waste Below Clearance Level." *Proceedings of the 16th International Conference on Nuclear Engineering. Volume 1,* Orlando, Florida, USA. May 11–15, 2008. pp. 617-626. ASME

[•] IAEA, Clearance Levels for Radionuclides in Solid Materials, IAEA-TECDOC-855, IAEA, Vienna, (1996)

When the Σ (Di/Ci) of waste is less than 1, the waste can be treated as non-radioactive waste.

$$\Sigma^{3}$$
Di/Ci = D_{Eu-152}/C_{Eu-152}+D_{Eu-154}/C_{Eu-154}+D_{Co-60}/C_{Co-60}


Di: Concentration of radionuclide of Eu-152, Eu-154 and Co-60 induced under 2.0×10⁵ n cm⁻²sec⁻¹ thermal neutrons, 40 years of operation, 6 years of cooling.

Ci: Clearance level referring CL for Eu-152, Eu-154 and Co-60.

International Atomic Energy Agency, Application of the Concepts of Exclusion, Exemption and Clearance Safety Guide No.RS-G-1.7, 2004

Ken-Ichi Kimura, Akira Hasegawa, Katsumi Hayashi, Mikio Uematsu, Tomohiro Ogata, Takao Tanosaki, Ryoetsu Yoshino, Mituru Sato, Minoru Saito and Masaharu Kinno, Development of Low-Activation Design Method for Reduction of Radioactive Waste below Clearance Level, 2008

Eu (ppm)

Figure 3 Distribution of quantities for Eu and Co in aggregates with enlargement of (Numbers in parentheses indicate the number of specimens) ordinary aggregates IPPT PAN

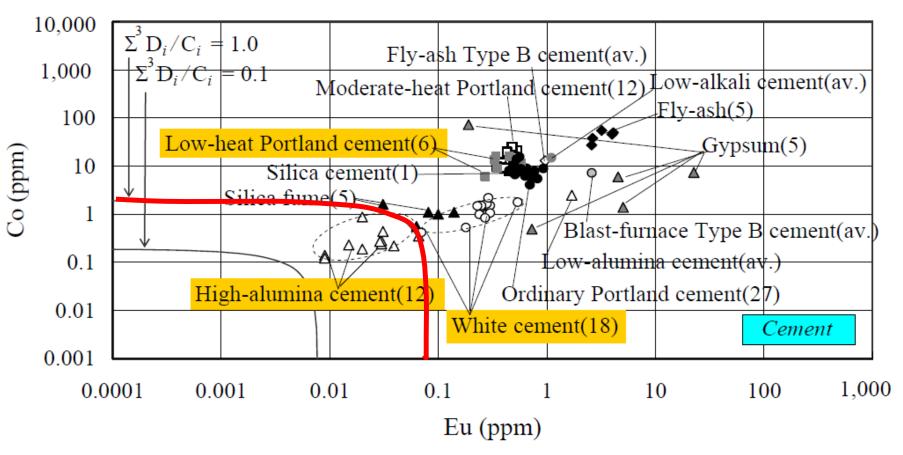
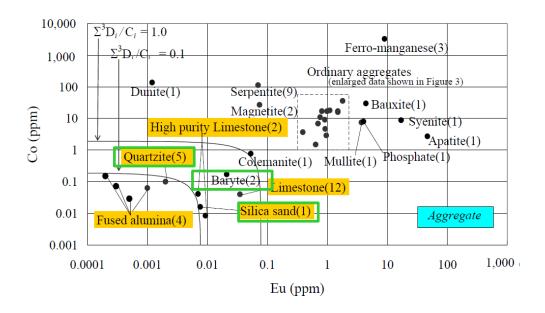
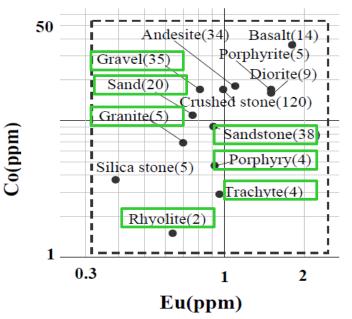
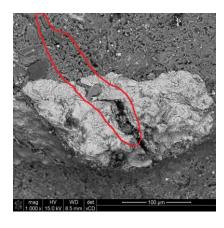
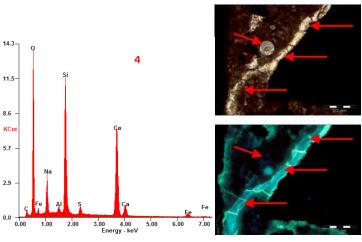



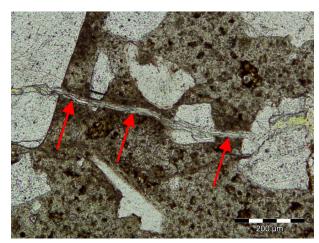
Figure 5 Distribution of quantities for Eu and Co in cement

(Numbers in parentheses indicate the number of specimens)

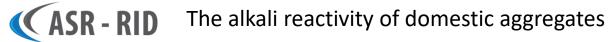
Estimation of the activation of concrete constituents: cement and aggregate

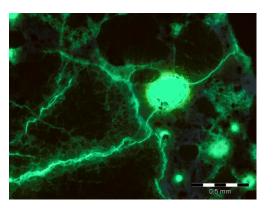



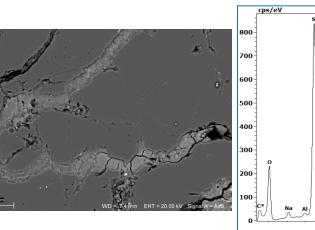

Figure 4 Enlargement of the distribution for Ordinary aggregates from Figure 2 (Numbers in parentheses indicate the number of specimens)



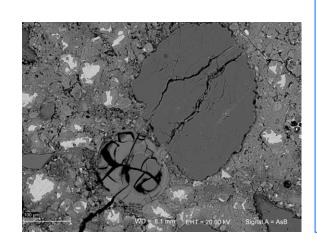
Evaluation of the threat of premature degradation due to Alkali-Aggregate Reaction in shielding concrete

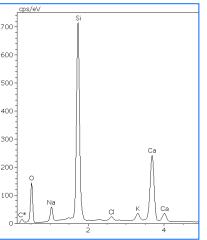



Hematite



Barite



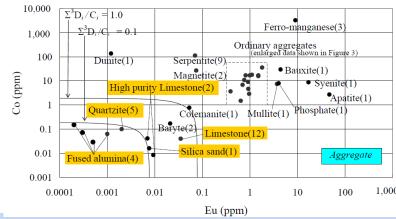


Quartzite

Siliceous sand

LOW - ACTIVATION SHIELDING CONCRETE

ALKALI-SILICA RESISTANT SHIELDING CONCRETE



Estimation of the activation of concrete constituents

Fine aggregate

aggregate reactivity class

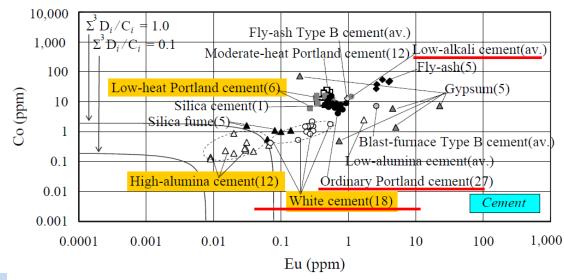
		Góra Kalwaria	R2, highly reactive
Siliceous sand	river	HB-1	R1, moderately reactive
	fossil	Borowce	R0, non reactive
Limestone sand	fossil	Miedzianka	R0, non reactive

Estimation of the activation of concrete constituents

Coarse aggregate

aggregate reactivity class

Quartzite	Wiśniówka	R2, highly reactive	
Barite	Wolfach	R0, non reactive	
Granite	Rogoźnica	R0, non reactive	
Limestone	Jaźwica	R0, non reactive	
		1,000 100 100 100 100 0 1 0.1 0.1	$\begin{array}{c c} D_{i}/C_{i} = 1.0 \\ \Sigma^{3}D_{r}/C_{r} = 0.1 \\ \hline \\ Dunite(1) \\ Magnetite(2) \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $

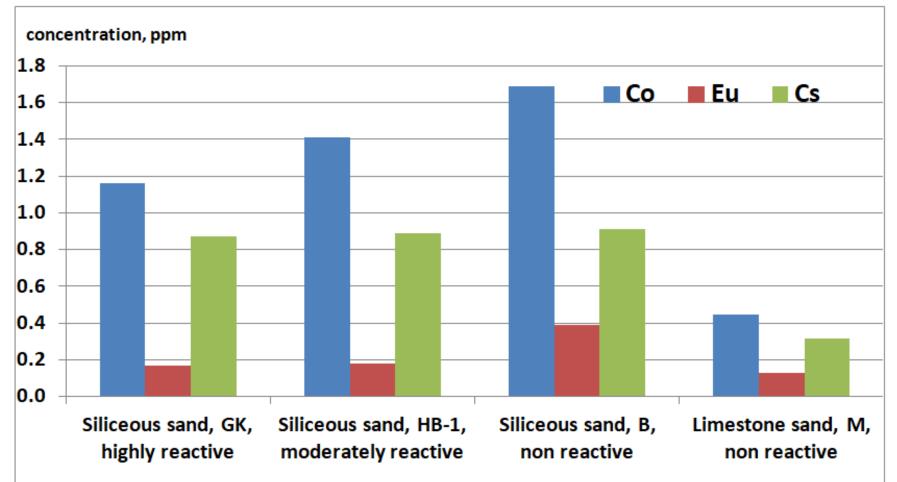


Estimation of the activation of concrete constituents

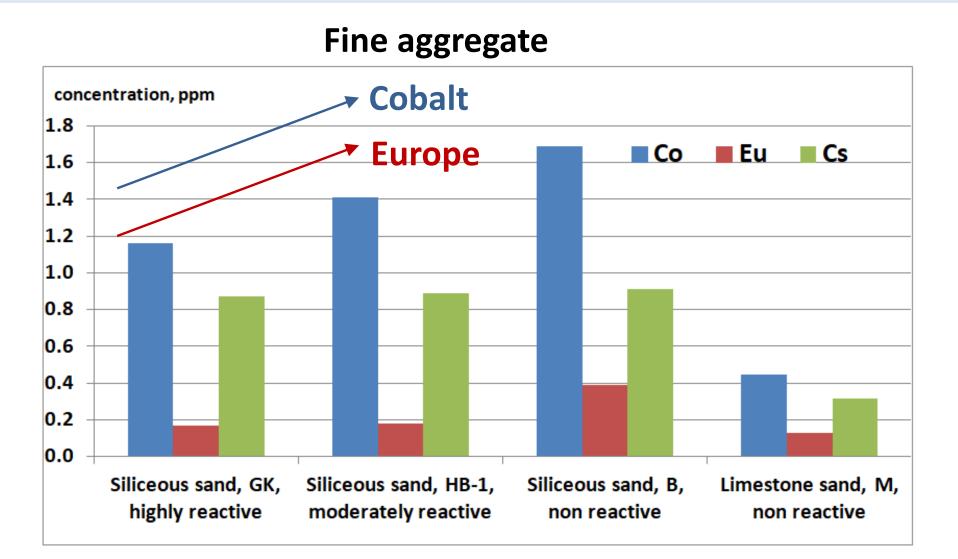
Cement CEM I

Content of Na₂O_{eq}

	CEM I 42,5R	Górażdże Cement (Poland)	0.56 %
Portland Cement	CEM I 52,5R	Lafarge Małogoszcz (Poland)	0.89 %
	CEM I 42,5R	Norcem - Heidelberger Zement (Norway)	1.12 %
White Cement	CEM I 52,5R	Aalborg White (Denmark)	0.23 %

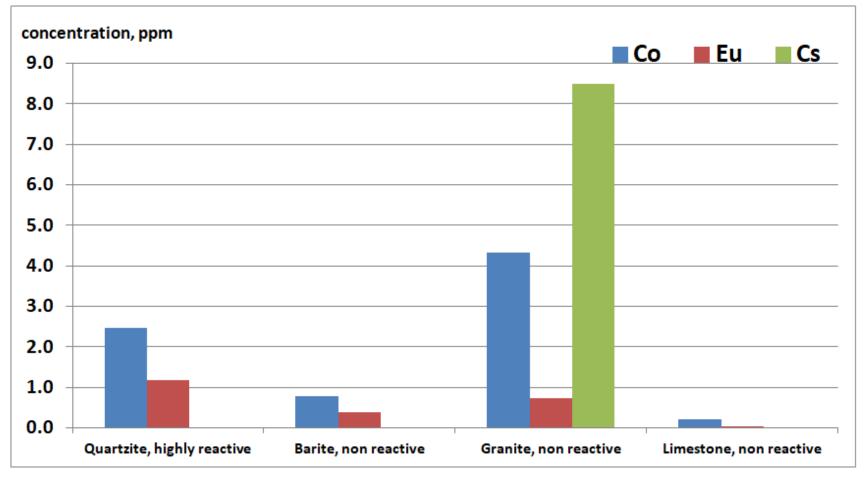


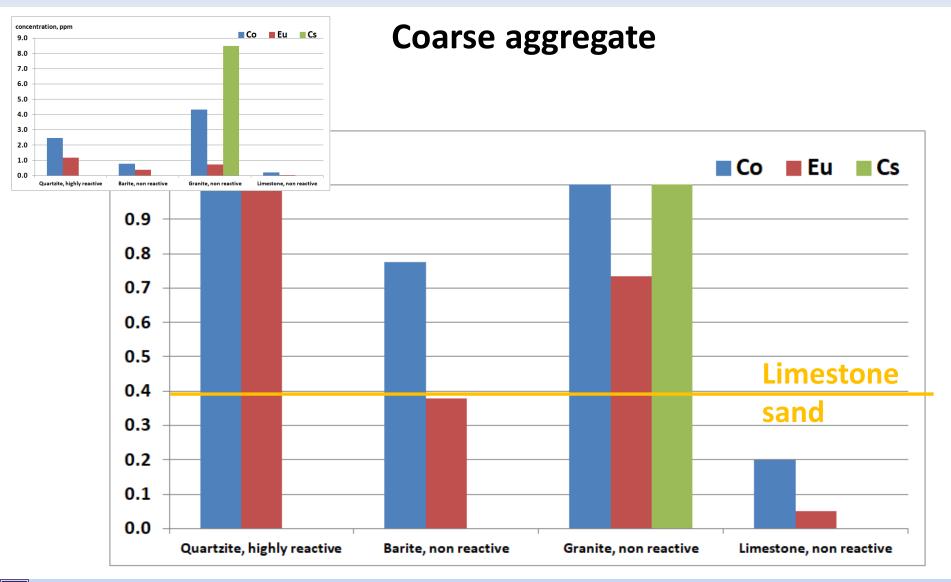
RADCON meeting, 25


Figure 5 Distribution of quantities for Eu and Co in cement (Numbers in parentheses indicate the number of specimens)

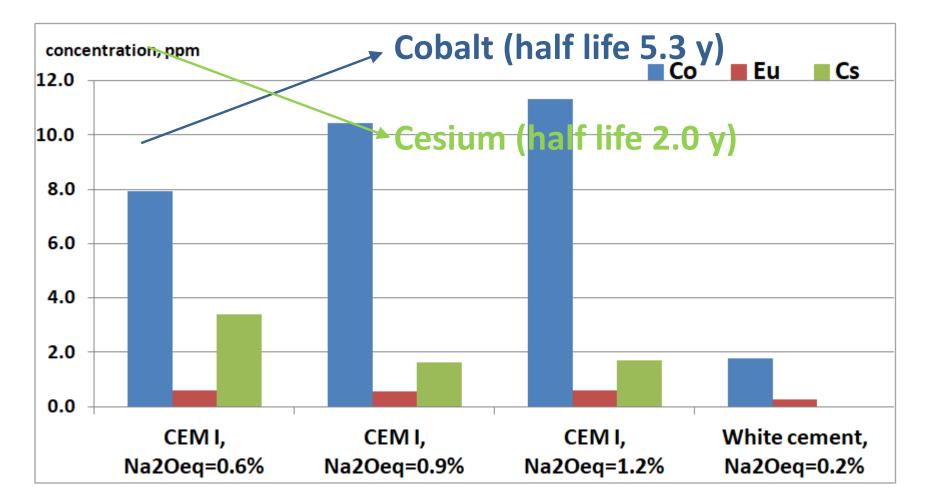
19

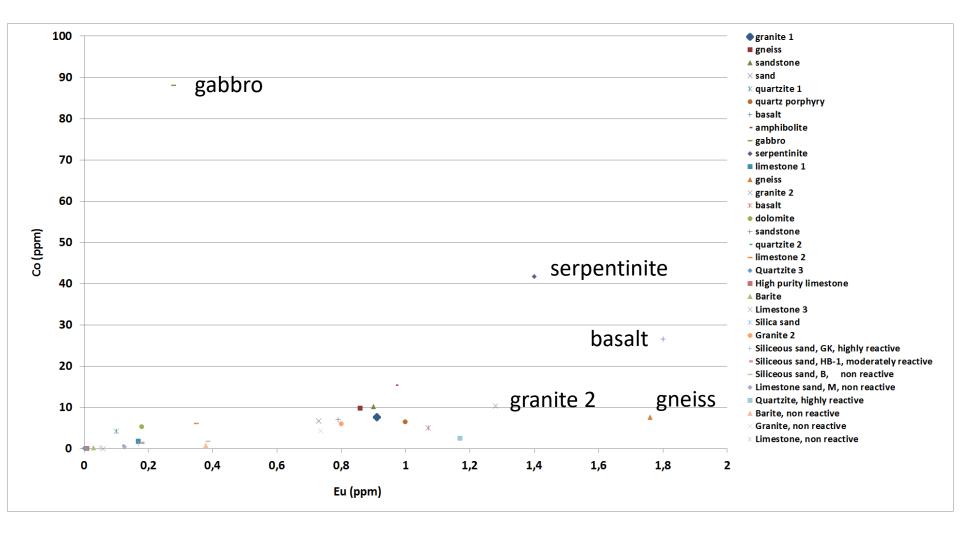
Fine aggregate

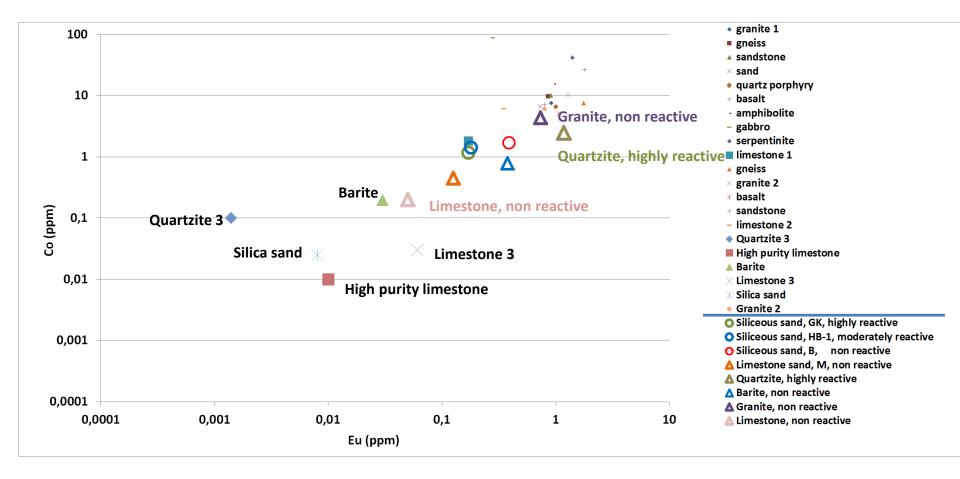


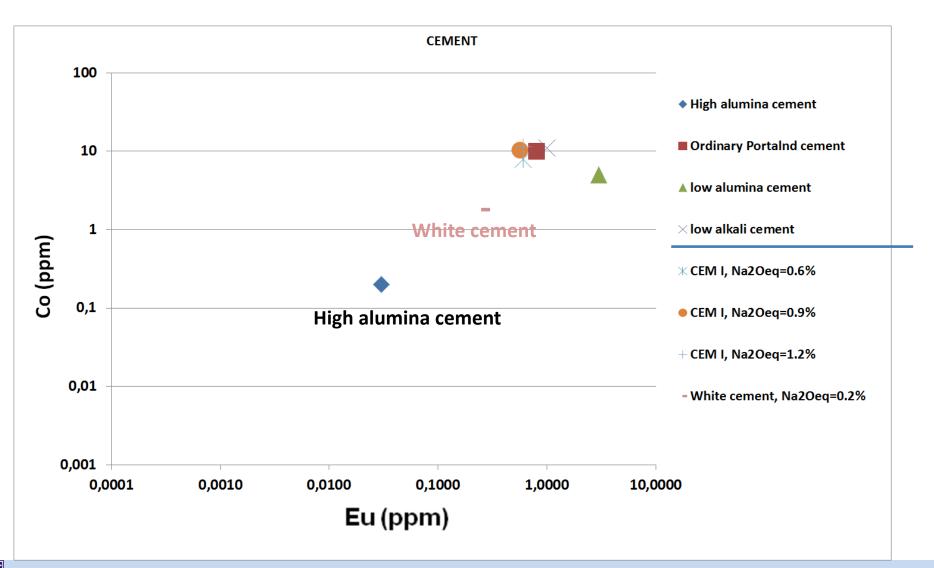


Coarse aggregate






Cement



- Low activation materials:
- Cement
 - White cement CEM I 52,5 R
- Aggregate
 - Quartzite
 - Limestone
 - Granite

Low-activation material

VS

low-activation cement matrix composite

White cement 52,5 R (Na₂O_{eq}=0.2%)

- ✓ Quartzite
- ✓ Limestone
- ✓ Granite
- 🗸 Opal
- ✓ Trachybasalt
- ✓ Flint

Low-activation materials

ASR potential !!! vs Low-activation

materials ???

- NaOH added (4 kg/m³)
- w/c=0.47

ALKALI-SILICA RESISTANT SHIELDING CONCRETE ???

- ✓ Opal
- ✓ Trachybasalt
- ✓ Flint

siliceous minerals but different forms of SiO₂

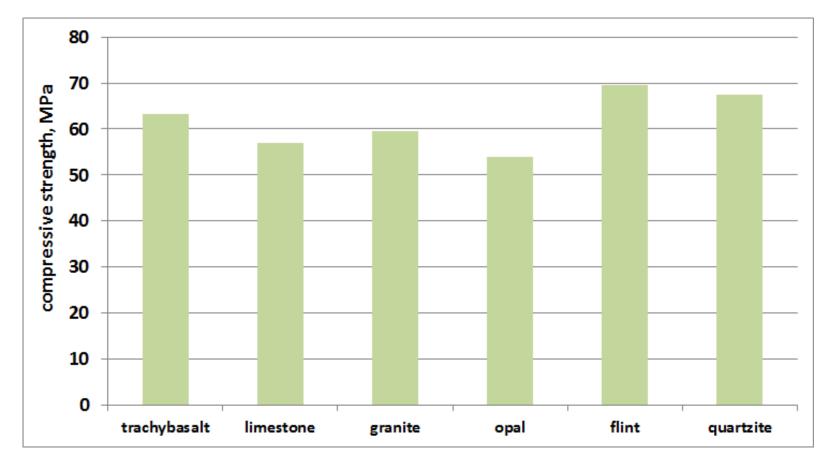
- Amorphous
- Chalcedony, opal
- Cryptorcystaline (chalcedony, trydimite)

Minerals without Fe, without heavy elements, ...

Influence of mineral composition on the ... disolution rate?

Mortar bar specimens: different time of irradiation

1 day, 1 week, 1 month


18x18x80 mm

Humid conditions

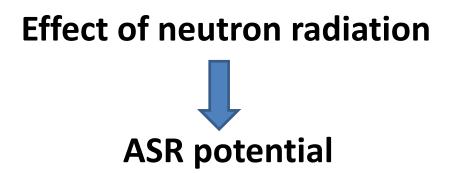
Mortar bar specimens, 28 days w/c=0.47

Expected analysis on mortar bar specimens after irradiation:

- Mechanical propreties
- Microstructure: aggregate, cement matrix
- Compressive strength
- Modulus of elasticity
- Microindentation
- SEM
- Thin sections
- ... ?

Instead of summary ...

Materials characterisation using radiation


low-activation concrete (decommissioning)

Instead of summary ...

Materials characterisation using radiation

low-activation concrete (decommissioning)

Thank you for your attention

Acknowledgements

The financial support by Polish National Centre for Research and Development (Project V4-506 Korea/2/2018) is gratefully acknowledged.

