Institute of Fundamental Technological Research Polish Academy of Sciences

Voids characterization in air entrained concrete specimens using optical microscopy and mercury intrusion porosimetry

Aneta Antolik, Michał A. Glinicki, Mariusz Dąbrowski

Voids in concrete

- Interlayer space in C-S-H (5 to $25 \AA$)
- Capillary voids (may range from 10 to 50 nm or may be as large as 3 to $5 \mu \mathrm{~m}$ in low or high water-cement ratio pastes, irregular in shape)
- Air voids (formed by entrapped air during concrete mixing or by entrained air by using special admixtures, usually spherical, entrained air voids usually range from 10 to $500 \mu \mathrm{~m}$)

Depending on the size and their distribution, the voids in the hydrated cement paste are considered as capable of adversely influencing the strength, promoting ingress of destructive media or enhancing the resistance to freeze-thaw damage

Air voids distribution

The distance between the air voids is important microstructural parameter

Frost: volume expansion during water-ice phase transition

The distance between the nearest air voids should be small enough not to allow significant pressure increase

Pressure release in air voids = frost resistance

Purpose of research

The investigation is aimed to get a quantitative description of voids in specimens of air-entrained concrete by means
of complementary experimental techniques,
like optical microscopy, x-ray microtomography and neutron imaging

Purpose of research

Compare three measuring techniques:

- neutron imaging \rightarrow Budapest Neutron Centre, Hungary
- X-ray microtomography \rightarrow Yonsei University, Korea
- optical analysis \rightarrow IPPT PAN, Poland

Parameters of the air-void system:
(A) the total content of voids,
(B) the air-void size distribution,
(C) the void-to-void proximity (the distribution of the distance between the air voids)

Concrete mix design

Mix component		Mass content [kg/m]			Density$\left[\mathrm{kg} / \mathrm{dm}^{3}\right]$	Volume [liters]		
		S61	W-P-2	GWB19		S61	W-P-2	GWB19
$\begin{aligned} & \text { Port } \\ & 42.5 \end{aligned}$	land Cement CEM I R	420	360	425	3.1	135.5	116.1	137.1
Water		165	144	166	1	165.0	144.0	166.0
	Quartz sand 0/2 mm	579	551	525	2.65	218.5	207.9	198.1
	Amphibolite $2 / 5 \mathrm{~mm}$	524			2.91	180.1		
	Amphibolite $5 / 8 \mathrm{~mm}$	687			2.91	236.1		
	Amphibolite $2 / 8 \mathrm{~mm}$		228		2.9		78.6	
	Amphibolite $8 / 16 \mathrm{~mm}$		475		2.9		163.8	
	Quartzite $16 / 32 \mathrm{~mm}$		645		2.65		243.4	
	Gabbro $2 / 4 \mathrm{~mm}$			326	2.94			110.9
	Gabbro 4/8 mm			991	2.94			337.1
	Plasticizer	1.89	1.8	2.89	1.04	1.8	1.7	2.8
	Air entraining agent	0.5	0.58	0.77	1.05	0.5	0.6	0.7

Concrete mix design

The content of concrete components based on mix design data

Concrete component	Relative volume content		
	S61	W-P-2	GWB19
Hardened cement paste	0.300	0.260	0.303
Air voids (entrained and entrapped)	0.066	0.016	0.042
Fine aggregate (quartz sand)	0.218	0.208	0.198
Coarse aggregate	0.415	0.516	0.457

Testing methods

- the determination of air void characteristics according to European standard EN 480-11 with the use of the computerized automatic image analysis system,
- the determination of pore size distribution using mercury intrusion porosimetry,
- the determination of the rate of water absorption following ASTM C1585 standard to provide a physical measure of voids connectivity in concrete,
- the determination of the distance between the air voids using image analysis.

Linear traverse method according to EN 480-11

Linear traverse method EN 480-11

Plane cross-section
M.A. Glinicki, Trwałość betonu w nawierzchniach drogowych, Instytut Badawczy Dróg i Mostów, Warszawa 2011

Calculation of air void spacing factor L according to Powers

$$
\bar{L}=\frac{P \cdot T_{t o t}}{400 \cdot N}
$$

$$
\bar{L}=\frac{3}{\alpha}\left[1,4(1+R)^{1 / 3}-1\right]
$$

R - paste-air ratio
M.A. Glinicki, Trwałość betonu w nawierzchniach drogowych, Instytut Badawczy Dróg i Mostów, Warszawa 2011

Microstructure parameters according to EN 480-11

Total air content:

$$
A={\frac{T_{a} \cdot 100}{T_{t o t}}}_{[\%]}
$$

Specific surface:

$$
\alpha={\frac{4 \cdot N}{T_{a}}}^{\left[m m^{-1}\right]}
$$

Micropores content (<300 $\mu \mathrm{m}$):

$$
A_{300} \quad[\%]
$$

(different stastistical model)

Theoretical basis of A_{300} calculations

side view (along the measuring line)

cross section (perpendicular to the measuring line)

The probability of the intersection of the air void with a radius r :

$$
\frac{\pi \cdot\left(y^{\prime}+y\right) \cdot\left(y^{\prime}-y+5\right)}{4 \cdot 10^{6}}
$$

Theoretical basis of A_{300} calculations

	Total length of the traverse line, Ttot=			1207,62	mm					
Column	1	2	3	4	5	6	7	8	9	10
	Air voids class	Class range	Numeber of chords in class	Frequency of chords	Share of counted air voids	Potential number of chords	Number of air voids in class	Singular air void volume	Air content	Cumulated air content
		$\mu \mathrm{m}$		mm ${ }^{-1}$	mm^{2}	mm^{-3}	mm^{-3}	mm^{3}	\%	\%
	1	0 do 10	42	0.034779177	0.0001178	295.239197	36.18315441	0.000000524	0.0019	0.00
	2	15 do 20	86	0.071214506	0.0002749	259.056043	140.2118519	0.000004190	0.0507	0.06
	3	25 do 30	62	0.051340691	0.000432	118.844191	-0.65738887	0.00001410 .1	-0.0009	0.06
	4	35 do 40	85	0.070386431	0.000589	119.50158	45.14014201	0.000033500	0.1512	0.21
	5	45 do 50	67	0.055481069	0.0007461	74.3614378	39.52211673	0.000065400	0.2585	0.47
	6	55 do 60	38	0.031466875	0.0009032	34.8393211	13.39223439	0.000113000	0.1513	0.62
	7	65 do 80	59	0.048856464	0.002278	21.4470867	9.479028412	0.000268000	0.2540	0.87
	8	85 do 100	42	0.034779177	0.002906	11.9680583	7.516038665	0.000524000	0.3938	1.27
	9	105 do 120	19	0.015733437	0.003534	4.45201964	1.468321635	0.000905000	0.1329	1.40
	10	125 do 140	15	0.012421135	0.004163	2.98369801	1.255299648	0.001440000	0.1808	1.58
	11	145 do 160	10	0.008280757	0.004791	1.72839836	0.200301563	0.002140000	0.0429	1.63
	12	165 do 180	10	0.008280757	0.005419	1.5280968	0.980391488	0.003050000	0.2990	1.92
	13	185 do 200	4	0.003312303	0.0060476	0.54770531	-0.44459626	0.00419000	-0.1863	1.74
	14	205 do 220	8	0.006624605	0.006676	0.99230156	0.652182865	0.005580000	-1803	2.10
	15	225 do 240	3	0.002484227	0.007304	0.3401187	-0.49495066	0.00724000	-0.3583	1.74
	16	245 do 260	8	0.006624605	0.007933	0.83506936	0.254710298	0.009200000	0.2075	1.98
	17	265 do 280	6	0.004968454	0.008561	0.58035906	0.49024309	0.011500000	0.5638	2.54
	18	285 do 300	1	0.000828076	0.009189	0.09011597	0.025724396	0.014100000	0.0363	2.58
	19	305 do 350	2	0.001656151	0.02572	0.06439157	-0.07525019	0.022400001	-0.1686	2.41
	20	355 do 400	5	0.004140378	0.02965	0.13964176	0.065662401	0.033500000	0.2200	2.63
	21	405 do 450	3	0.002484227	0.03358	0.07397936	0.029815327	0.047700000	0.1422	2.77
	22	455 do 500	2	0.001656151	0.0375	0.04416403	0.030152602	0.065400000	0.1972	2.97
	23	505 do 1000	10	0.008280757	0.591	0.01401143	0.012327838	0.524000000	0.6460	3.61
	24	1005 do 1500	2	0.001656151	0.9837	0.00168359	0.001081795	1.770000000	0.1915	3.81
	25	1505 do 2000	1	0.000828076	1.376	0.0006018	0.000601799	4.190000000	0.2522	4.06
	26	2005 do 2500	0	0	1.769	0	0	8.180000000	000	4.06
	27	2505 do 3000	0	0	2.162	0	-0.00030101	14.100000001	-0.4244	
	28	3005 do 4000	2	0.001656151	5.502	0.00030101		33.500000000	0.0000	3.63

Zawartosc zaczynu cementowego w betonie $\mathrm{P}=$	27	$\%$	
Calkowita dlugosc cieciw przypadajaca na pory $\mathrm{T}_{\mathrm{a}}=$	55.28	mm	
Calkowita zawartosc powietrza $\mathrm{A}=$	4.58	$\%$	
Calkowita liczba mierzonych cieciw $\mathrm{N}=$	592		
Powierzchnia wlasciwa porow $\alpha=$	$\mathbf{4 2 . 8 3}$	mm^{-1}	
	Stosunek zaczyn/powietrze $\mathrm{R}=$	5.897	
	Wskaznik rozmieszczenia $\mathrm{L}=$	$\mathbf{0 . 1 2}$	mm
	Zawartosc mikroporow $\mathrm{A} 300=$	2.58	$\%$

Optical microscopy with digital image analysis

Distance between the air voids using image analysis

RADCON meeting, 25-26 September, 2019, Warsaw, Poland

Nearest-Neighbour Spacing Distribution

T.Murotani, S.Igarashi, H.Koto, Distribution analysis and modeling of air voids in concrete as spatial point processes, Cement and Concrete Research 115, 124-132, 2019

Sample preparation

Extraction of a point pattern for the air voids: (a) original scanned image, (b) segmentation and coloring of the different phases, (c) scanned air voids, (d) segmented aggregate particles, (e) inversion of image (c), (f) point pattern of image (e).

T.Murotani, S.Igarashi, H.Koto, Distribution analysis and modeling of air voids in concrete as spatial point processes, Cement and Concrete Research 115, 124-132, 2019
Anne Sophie Dequiedt, Michel Coster, Liliane Chermant, Jean-Louis Chermant, Distances between air-voids in concrete by automatic methods, Cement and Concrete Composites, 23, 2-3, 2001, 247-254

Image acquisition

ImageJ

Algorithm

In a close packed configuration of particles/fibers having a circular cross section in 2D space there are 6 immediate neighbors surrounding each particle. In randomly packed systems, coordination number depends on the visual perception and can be lower or higher. Estimation of particle spacing of a particle with its neighboring particles is performed as follows:

1. The centroid coordinates of each particle (X, Y) is derived from the result table of the built-in Analyse Particles plugin.
2. A circle is fit on each particle with the center (X, Y) and radius r.
3. The spacing (wall thickness) between a pair of particles (d) is calculated as:

$$
d=\sqrt{\left(Y_{2}-Y_{1}\right)^{2}+\left(X_{2}-X_{1}\right)^{2}}-\left(r_{1}+r_{2}\right)
$$

4. The distances of each particle with all the other particles is stored in an array and sorted.
5. Results are shown in a new result table, which contain the distance of the closest neighbor to each particle.

ImageJ - results of analysis

d Distance Between Neighboring Particles.csv		
File Edit Font		
Average Distance From 3 Neighbors	Nearest Neighbor Distance	-
0.330913	0.197693	
0.628554	0.404906	
0.438894	0.267943	
0.604283	0.524805	
0.285243	0.139665	
0.325844	0.226859	
0.588860	0.487779	
0.256761	0.213384	
0.268293	0.190998	
0.610418	0.555495	
0.462182	0.279340	
0.452339	0.421078	
0.457255	0.319453	
0.754071	0.574406	
0.658529	0.564016	
0.623938	0.363707	
0.595467	0.538923	
0.629419	0.441146	
0.247640	0.092108	*
4		$\stackrel{\rightharpoonup}{*}$

Image Pro Plus

Split Objects

Draw a line between objects and press the right mouse button.

Manual spliting

Area, PerArea, Center-X, Center-Y, Diameter (min, max), Radius (min, max)

Auto Split: You can also use the Auto Split command to instruct Image-Pro Plus to analyze all existing outlines and automatically split any clustered objects it finds. Of course, not all clustered objects can be separated with Auto Split; in general, circular objects with minimal overlap work best.

Results

Mercury intrusion porosimetry

Mercury intrusion porosimetry

Mercury intrusion porosimetry

Water absorption

The example plot of the absorption I versus square root of time for W-P2 concrete

Capillary pores vs water absorption

EN 480-11 procedure

EN 480-11 procedure

Air void characteristics	S61	W-P-2	GWB19
	6.56	1.60	4.18
A [\%]	6.36	30.43	33.29
$\alpha\left[\mathrm{~mm}^{-1}\right]$	20.26	0.19	0.26
L [mm]	0.17		
A $_{300}[\%]$	1.89	0.79	2.28

Image binarization

WP-2-1

$15.83 \times 76.48 \mathrm{~mm}$

Image binarization

GWB19-1

$15.83 \times 76.48 \mathrm{~mm}$

Image binarization

S61-1

$15.83 \times 76.48 \mathrm{~mm}$

Air voids distribution

Distance between air voids two nearest neighbour d [mm]

Air voids distribution

WP2

EN 480-11

Air voids distribution

S61

EN 480-11

Air void diameter [$\mu \mathrm{m}$]

Air voids distribution

Air voids distribution (image analysis)

	WP-2_1		S61_1		GWB19-1	
	ImageJ	Image Pro	ImageJ	Image Pro	ImageJ	Image Pro
Total air content [\%]	1.75	1.70	7.65	6.95	9.01	7.03
Average distance between air void nearest neighbour [mm]	0.229	0.219	0.158	0.129	0.164	0.144
Average distance between center (x, y) of air void nearest neighbour [mm]	-	0.324	-	0.191		0.216
Average minor diameter of air void [mm]	0.053	0.048	0.058	0.052	0.059	0.054
Average major diameter of air void [mm]	0.069	0.069	0.081	0.082	0.079	0.081
Average diameter of air void [mm]	0.061	0.058	0.069	0.064	0.069	0.065
A_{300} [\%]	1.12	1.10	2.47	2.53	2.70	2.55
Numer of air voids	3123	3123	6644	6590	7250	7273

Air voids distribution (image analysis)

Air void characteristics	S61_1			WP-2_1			GWB19_1		
	Traverse method	ImageJ	Image Pro	Traverse method	ImageJ	Image Pro	Traverse method	ImageJ	Image Pro

A [\%]	6.56	7.65	6.95	1.60	1.75	1.70	4.18	9.01	7.03
L [mm]	0.19	0.16	0.13	0.26	0.23	0.22	0.17	0.16	0.22
A $[\%]$	1.89	2.47	2.53	0.79	1.12	1.10	2.28	2.70	2.55

Further work (problems to be solved)

- Image processing - morphological filters
- Merging of air voids - problems with automatic spliting
- Setting shape parameters for automatic removal of cracks, non-air voids objects
- Comparing 2D-image with 3D-techniques distances between centroids (x, y) instead of distances between air voids...?

Conclusions

- Quite good agreement of results obtained by linear traverse method (EN 480-11) and surface analysis using image analysis was observed:
- Total air content
- Content of micropores
- Avarage distance between air voids (L) (void separation)
- 2D image analysis allows for a more accurate results of air voids distribution and evaluation of homogenity
- Image processing requires more detailed study
- Comparing the distance between pore centers may be more suitable for further comparison with 3D techniques

Thank you for your attention!

The research was founded by Polish National Centre for Research and Development (Project V4-Korea/2/2018, RADCON)

