

LOW - ACTIVATION CONCRETE

Daria Jóźwiak-Niedźwiedzka

RADCON meeting, 11-14 March, 2019, Smolenice – Slovak Academy of Sciences

Outline

- Goal of the research
- Research plan
- Expected results

Motivation

Collaboration within RADCON Project

multi-author articles, papers, ...

Goal of the research

The lowest possible activated cement based material

Low-activation concrete

Raw Materials for Low-Activation Concrete Neutron Shields

Masaharu KINNO , Ken-ichi KIMURA & Takashi NAKAMURA

To cite this article: Masaharu KINNO , Ken-ichi KIMURA & Takashi NAKAMURA (2002)

- the raw materials for low-activation concrete were: low-activation limestone, quartzite, colemanite, alumina-ceramics, white Portland cement and high-alumina cement
- concrete surrounding a nuclear reactor

Fujita Technical Research Report No.43 2007

Low-Activation Reinforced Concrete Design Methodology -Fundamental Investigation for various Types of Low-Activation Concrete-

Ken-ichi Kimura, Masaharu Kinno, Hirokazu Nishida, Noritcika Katayose, Mikihiro Nakata², Katsumi Hayashi³, Mikio Uematsu⁴ and Akira Hasegawa¹

- 3 kinds of aggregates (fused alumina ceramics, silica sand and limestone) and 2 kinds of cements (high alumina cement and white cement) were selected as raw materials for the low–activation concrete
- long-term use in a nuclear power plant

- high-purity limestone aggregate and white cement
- high-purity limestone aggregate and aluminous cement
- the present invention relates to the use of low-activation concrete in radiation protection structures, preferably for particle accelerators

Application of low-activation concrete

Neutron-shielding (biological shielding)

What about concrete properties?

The concrete with high alumina cement:

- high drying shrinkage
- long term durability (low w/c ratio)
- heat generation

Goal of the research

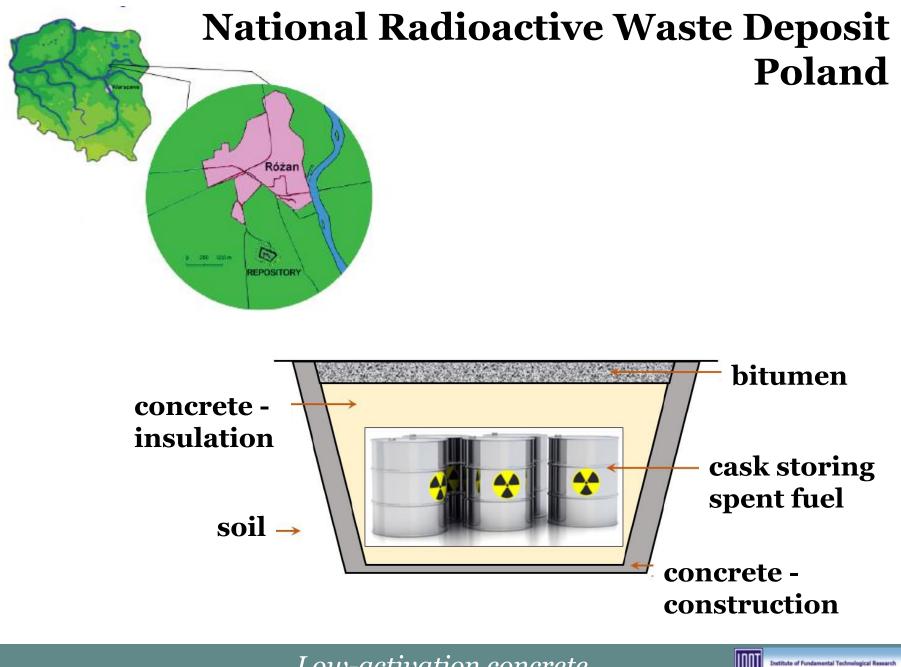
The lowest possible activated cement based material

- Cask storing spent fuel (low-activation concrete)
- Long term durability of concrete (liquid and gaseous media)

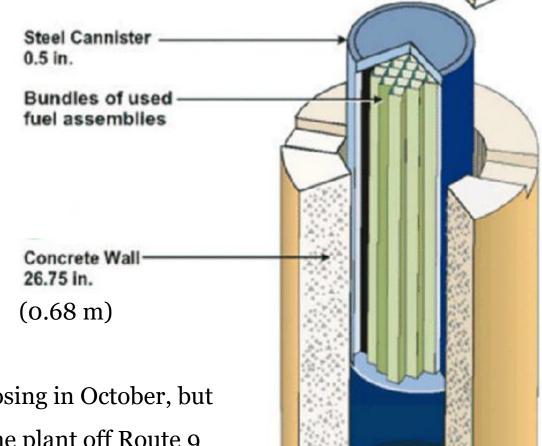
Cask storing spent fuel

the Yankee NPP, Connecticut

HI-STORM is engineered for maximum shielding, ... twenty-six inches of concrete (0.66 m)


https://holtecinternational.com

the Zion NPP, Illinois


http://www.zionsolutionscompany.com

the Oyster Creek NPP, New Jersey

The Oyster Creek NPP may be closing in October, but the spent nuclear fuel stored at the plant off Route 9 here for nearly 50 years isn't going anywhere. Feb 6, 2018

https://patch.com/new-jersey/lacey/oyster-creeks-spent-nuclear-fuel-casks-arent-going-anywere

Goal of the research

The lowest possible activated and durable cement based material for cask storing spent fuel

The design of the low-activation or even nonactivation concrete

What we are looking for?

- The trace elements predominantly responsible for the activation of concrete materials
- Eu and Co are dominant materials for activation in the cement and concrete

The three radioisotopes 60Co, 152Eu and 154Eu alone occupy 99–100% of the total residual radioactivity in ordinary concrete at the time of decommissioning

Radiochemical analyses: Co, Eu, Cs, Fe and Sc

Research plan

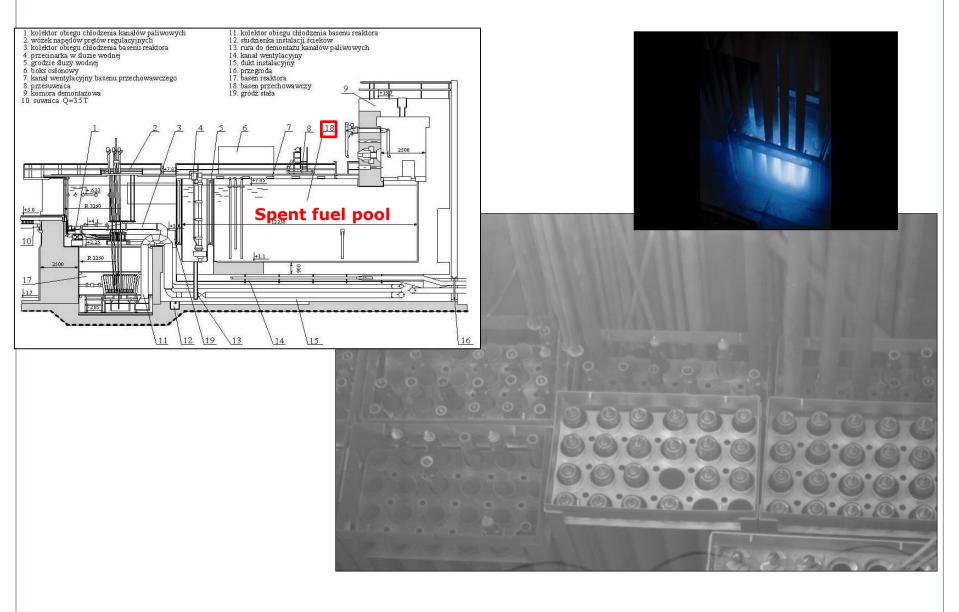
- Selection of aggregates, cements and additives (fly ash, slag, ...) as raw materials to design and perform the low–activation concrete
- Evaluation of materials by radiochemical analyses (NAA, PGAA ???) which assessed the quantities of dominant trace elements for the activation under specific conditions
- Design and perform of special concrete for cask storing spent fuel
- Properties of fresh mix (workability, heat generation, ...)
- Fundamental mechanical properties
- Durability test (gas and water permeability, ...)

Expected results

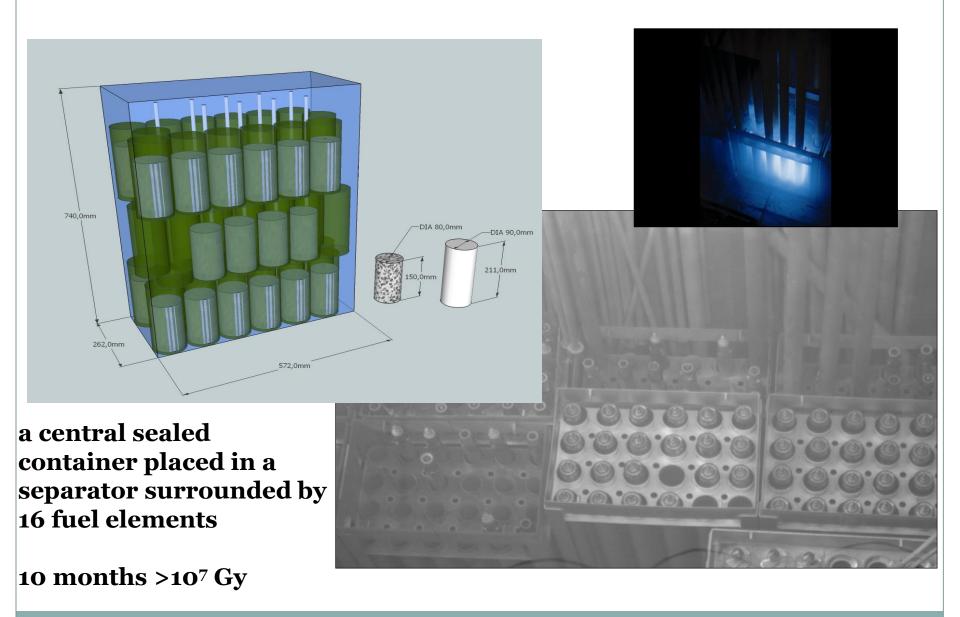
- 1. Activation analysis of cements, aggregates and additives (fly ash, slag, ...)
- 2. The design of 4 or 6 of concretes (mortars)
 - Low-activation concrete
 - Durable concrete (liquid and gaseous media)
- 3. Activation analysis of performed concretes
- 4. Results of the long term durability of concretes
- **5. Database for Monte Carlo simulations ?**

Any other ideas?

...



Activation analysis of cement and supplementary cementitious materials


Material	Isotope	T _{1/2}	mass [mg]	kBq/g	10 x T _{1/2} [kBq/kg]
Cem I 42.5R	Sc-46	83.785 d	246	4.9	4.8
	Sc-47	3.349 d		39.2	38.2
	Fe-59	44.495 d		3.9	3.8
	In-114m	1.198 m		0.8	0.8
Ground granulated blast furnace slag	Sc-46	83.785 d	241	15.2	14.89546
	Sc-47	3.349 d		30.3	29.64591
Fly ash	Sc-46	83.785 d	178	27.0	26.41156
	Fe-59	44.495 d		11.7	11.4513
	Co-60	5.274 y		1.8	1.827315

5 min in reactor MARIA, neutron flux 2x10¹⁴ cm⁻²s⁻¹

Irradiation of concrete specimens – separator with spent fuel

Irradiation of concrete specimens – separator with spent fuel

Thank you for your attention

Acknowledgements

The financial support by Polish National Centre for Research and Development (Project V4-506 Korea/2/2018) is gratefully acknowledged.

