

Exposure of heavyweight concrete to gamma irradiation in spent fuel pool

<u>Daria Jóźwiak-Niedźwiedzka,</u> Mariusz Dąbrowski Michał A. Glinicki, Aneta Antolik

RADCON meeting, 12-15 June, 2018, Budapest, Hungary

Outline

- Purpose of the research
- Concrete mix design
- Reactor Maria spent fuel pool
- Preliminary tests: physical properties of concrete; strength and permeability
- Concluding remarks

Purpose of the research

Laboratory-based fundamental investigation to study influence of gamma radiation on properties of heavyweight concrete

- possibility of testing in the spent fuel pool
 - Ensure long-term durability (<u>normal</u> and emergency operating condition of the NPP)
 - Attenuation of the radiation NPP and other sources
 - Impermeability of concrete containment (potential contaminated gases and liquids)

The composition of heavyweight concrete was focus on shielding properties (gamma radiation) and its impermeability

Special aggregates

Attenuation of γ radiation (heavyweight aggregate)

Barite; ρ= 4.2 g/cm³

Magnetite; ρ= 4.8 g/cm³

quartz

Thin section images

Special aggregates

Attenuation of neutron radiation (chemical bonded water)

Serpentinite

11% crystalline water in aggregate

fibrous serpentine:

- chrysotile
- lizardite
- antigorite

Thin section image

Concrete mix design

- Cement: Portland clinker and 55% of GGBFS (CEM III/A) 350 kg/m³
- Siliceous sand
- *w/c* = 0.48
- Slump: 60-100 mm
- Curing age: 90 days
- Aggregates diameter: up to 16 mm
- Aggregates ratio:

Designation [% of volume]	M8 0	S80	M53 S27	M27 S53	B100	B80	B53 S27	B27 S53
Sand (0-2 mm)	20	20	20	20	-	20	20	20
Magnetite	80	-	53	27	-	-	-	-
Barite	-	-	-	-	100	80	53	27
Serpentinite	-	80	27	53	-	-	27	53
Density of concrete [kg/m ³]	3600	2400	3150	2800	3450	3200	2950	2650

Research reactor "MARIA" at National Center for Nuclear Research

Learning by doing

Exercises: How to set the fuel rods ...

Spent fuel pool – demineralized water

Flow gate

The most important ... safety on board

Time of gamma irradiation: 6 months ≈ dose 1.9 – 2.4 MGy

Test methods

- Compressive strength
- Porosity accessible to water
 NF P18-459
- Rate of water absorption ASTM C 1585
- Mercury intrusion porosimetry (MIP)
- SEM observation
- X-ray diffraction
- Differential scanning calorimetry (DSC)

- Permeability

– Microstructure

- Structural changes

Compressive strength

Average of 3 specimens (cylinder: $\emptyset = 75$ mm, h=75 mm)

Porosity accessible to water NF P18-459

Average of 3 specimens (cylinder: $\emptyset = 75 \text{ mm}$, h=45 mm)

Rate of water absorption ASTM C 1585

Average of 3 specimens (cylinder: Ø=75 mm, h=45 mm)

Matrix porosity before y irradiation - MIP

Results from 3 drilled cores: $\emptyset = 16 \text{ mm}$, h=20 mm

D. Jóźwiak-Niedźwiedzka, M. Dąbrowski, M. A. Glinicki, A. Antolik

Matrix porosity after y irradiation - MIP

Results from 3 drilled cores: $\emptyset = 16 \text{ mm}$, h=20 mm

Pore diameter [µm]

Porosity larger than 0.1 µm - MIP

Porosity larger than 0.1 µm - MIP

Formation of calcite - XRD

Formation of calcite - XRD

Microstructural observation

Before irradiation

After γ irradiation

SEM images of specimen M23 S56

Microstructural observation

Before irradiation

After γ irradiation

Barité grain

SEM images of specimen B23 S56

Concluding remarks

- The method of exposure to gamma irradiation of concrete specimens in spent fuel pool has been elaborated
- Characterization methods of concrete have been chosen, which were able to reveal the effect of gamma irradiation of concrete
- Experiments showed some effects of concrete composition ...

Concluding remarks

- Dose of 2 MGy of gamma irradiation in concrete caused decrease of compressive strength up to 10%, especially for concrete with serpentinite aggregates
- Gamma irradiation caused increase of capillary porosity larger than 0.1 µm. It is related to appearance of microcracks after gamma irradiation.
- Concrete with barite aggregate revealed additional cracks across the barite grains. That was probably the reason of 3-5 times increase of water absorption of concrete.

Acknowledgements

THANKS:

Michał Gryziński & Jakub Ośko (National Center for Nuclear Research NCBJ)

Albin Garbacik & Mikołaj Ostrowski (Institute of Ceramics and Building Materials-Kraków Branch)

Thank you for your attention

Acknowledgements

The financial support by Polish National Centre for Research and Development (Project V4-506 Korea/2/2018) is gratefully acknowledged.

